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ABSTRACT

An error probability analysis is performed for an M-ary orthogonal frequency

shift keying (MFSK) receiver employing fast frequency-hopped (FH) spread spectrum

waveforms transmitted over a fading channel with partial-band interference. The

piirt jal-band interference ib modeled as a Gaussian process. Wideband thermal noise is

also included in the analysis. Diversity is performed using multiple hops per data bit.

Each diversity reception is assumed to fade independently according to a nonselective

Rician process. A nonlinear combination procedure referred to as self-normalization

combining is employed by the receiver to minimize partial-band interference effects.
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I. INTRODUCTION

Spread spectrum communication systems are designed to use signals having a

much wider bandwidth than ordinary communication systems. Some of advantages

of spread spectrum signals are the energy gain achivable against a narrow band jam-

mer, low probability of detection (LPD), low probability of intercept (LPI), multiple

access operation, and the capability to overcome the effects of multipath [Ref. 1].

The primary disadvantages of spread spectrum signals are the time and frequency

synchronization required by the receiver which make it difficult to implement the

system and the wide frequency band requirement. There are three primary spread

spectrum communication methods: time hopping (TH), frequency hopping (FH) and

direct spreading (DS). This thesis presents an error probability analysis of two fast

frequency-hopped M-ary orthogonal frequency-shift keyed (FFH/MFSK) systems,

where the term 'fast' implies that the frequency-hopping rate is greater than the

symbol rate. The first to be examined is a conventional FFH/MFSK system and,

the second is a self-normalization FFH/MFSK system. Both systems use noncoher-

ent detection. The channel is assumed to experience both fading and partial-band

interference. The performance of the two receivers is compared with each other as

well as with another type of FFH/MFSK receiver referred to as a noise-normalization

receiver [Ref. 2].

A. Conventional Receiver and Self-Normalization Receiver

In the conventional FFH/MFSK receiver, illustrated in Fig. 1.1, the input

signal passes through a videband radio frequency (RF) filter and is mixed with the

frequencies which are created pseudo-randomly in the frequency synthesizer to dehop

1
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and convert the signal frequency down to intermediate frequency (IF). The bandwidth

of the RF filter (W) must be wide enough to pass all possible hopping frequencies,

while the bandwidth of the IF filter (B) needs pass only one hopping frequency.

Thus, the bandwidth of the RF filter (W) is approximately equal to NB, where N is

number of the hopping frequencies. The receiver has M different branches for each of

the Al different symbols. The IF signal is demodulated with a bandpass filter and a

quadratic detector. The output signal from each quadratic detector is sampled L times

and combined to provide a decision statistic between the M available outputs. The

transmitter uses fast frequency-hopping to provide L independent samples through

frequency diversity. The receiver is assumed to dehop the signal with perfect timing.

In the self-normalization receiver, illustrated in Fig. 1.2, each of the M quadratic

detector outputs are divided by the sum of the quadratic detector outputs from all

.1 channels. This normalization factor is the only difference from the conventional

receiver. When partial-band interference present, the hops that are corrupted by the

partial-band noise jamming dominate the performance of the conventional detector

since each hop is equally weighted in the overall decision statistic. The normalization

factor minimizes this effect in the self-normalization receiver. As with the conven-

tional FFH/MFSK receiver, the L samples at the output of the M quadratic detectors

are combined to provide a decision statistic between the M available quadratic detec-

tor outputs, and the receiver is assumed to dehop the signal with perfect timing.

B. Fading

For both receivers investigated in this thesis, the received signal is assumed

to be a combination of a single, nonfaded (direct) component and many reflected

(diffuse) signals. By modelling the fading as Rician, in which the signal is considered

to consist of a direct signal component and a diffuse signal component, we obtain a

3
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general result that is valid in the limit of large direct-to-diffuse signal power ratios

for Gaussian channels and in the limit of small direct-to-diffuse signal power ratios

for Rayleigh fading channels as well as the general case where the effects of both the

direct and diffuse components of the signal must be included in the analysis. For a

Rician faded signal with amplitude ,'f2ak, the probability density function is [Ref. 3]

fAk(ak) = akexp 2ak ) Io ' u(ak) (1.1)
2220,2 a1k02/

where a 2 is the power of the direct signal component, 20,2 is the power of the diffuse

signal component, u(s) is the unit step function, and I0(*) is the zeroth-order modified

Bessel function of the first kind. When the direct signal component power is zero,

which occurs in times of deep channel fading on the channel such as when the direct

communication path is blocked by terrain or other obstacles, the probability density

function reverts to the Rayleigh probability density function [Ref. 3]

fAk(ak) = a exp ( 2a) U(ak) (1.2)

Also in this thesis, we assume that the smallest spacing between frequency hop

slots is larger than the coherence bandwidth of the channel [Ref. 4]. As a result, each

hop of a symbol experiences independent fading. In addition, the channel for each

hop of a symbol is modeled as a frequency-nonselective, slowly fading Rician process.

This implies that the signal bandwidth is much smaller than the coherence bandwidth

of the channel and that the hop duration is much smaller than the coherence time of

the channel [Ref. 5]. The latter assumption is equivalent to requiring the hop rate

to be large compared to the Doppler spread of the channel. As a result, the signal

amplitude can be modeled as a Rician random variable that remains fixed at least

for the duration of a single hop.

5



C. Partial-Band Interference

One of the applications of frequency-hopped spread spectrum signals is to reduce

receiver performance degradation due to narrowband interference (either intentional

or otherwise). This is accomplished by transmitting each symbol at a different carrier

frequency according to some apparently random pattern known only by the trans-

mitter and the receiver. The bandwidth of the frequency-hopped signal is generally

much larger than the signal bandwidth in the absence of frequency-hopping. Conse-

quently, in order to interfere with the entire spread spectrum band, given a fixed total

interference power the noise power spectral density of the narrowband interference is

reduced. Rather than interfere with the entire spread-spectrum bandwidth simultane-

ously with the consequent reduction in noise power spectral density, the narrowband

interference may affect only a portion of the total spread spectrum bandwidth at

any one time, and the portion of the total spread spectrum bandwidth experiencing

narrowband interference may also change in an apparently random manner. This

is referred to as partial-band interference. In the case of partial-band interference,

only some of the transmitted symbols will be affected by narrowband interference,

and the question arises as to whether performance can be improved by implementing

diversity in the form of fast frequency-hopping; that is, each information symbol is

transmitted multiple times, and each transmission is at a different apparently random

carrier frequency within the overall spread spectrum bandwidth.

As mentioned previously, in this thesis the performance of two different fast

frequency-hopped M-ary orthogonal frequency-shift keyed (FFH/MFSK) noncoher-

ent receivers is investigated. The performance of the conventional FFH/MFSK non-

coherent receiver in a Rician fading channel with only wideband noise (no partial-

band interference) has been previously investigated [Ref. 6]. For the self-normalized

FFH/MFSK receiver, system performance is obtained as an upper bound on the

6



probability of bit error, while for the conventional FFH/MFSK receiver, the actual

probability of bit error is obtained. For both systems, the transmitter is assumed to

implement

In addition to wideband Gaussian noise, the channel is assumed to be affected

by narrowband noise in the form of partial-band interference. The interference that

is considered in this thesis may be due to a partial-band jammer as well as other

unintended narrowband interferences. The partial-band interference is modtekd as

additive Gaussian noise and is assumed to corrupt only a fraction -', where 1 > -y > 0,

of the entire spread spectrum bandwidth at any one time. This is illustrated in Fig.

1.3 where S represents the signal power level, Nj/2 the jamming noise plus thermal

noise power spectral density, No/2 the thermal noise power spectral density, B the

bandwidth of one frequency cell, and W the entire frequency band. In addition,

partial-band interference, when present, is assumed to be present in each branch of the

MFSK demodulator, and the fraction of the spread spectrum bandwidth experiencing

partial-band interference is assumed to be the same for all hops of a symbol. Hence,

-f is the probability that partial-band interference is present in all M channels of the

receiver, and 1 - -y is the probability that partial-band interference is not present in

all M channels of the receiver. If Nj12 is defined to be the avciage power spectral

density of narrowband interference over the entire spread spectrum bandwidth, then

1Y'Nj/2 is the power spectral density of partial-band interference when it is present.

Thermal noise and other wideband noise that corrupt the channel are modeled as

additive white Gaussian noise, and the power spectral density of this wideband noise is

defined as No/2. Thus, the power spectral density of the total noise is -'Nj/2+No/2

when partial-band interference is present and No/2 otherwise. If the equivalent noise

bandwidth of each bandpass filter in both the conventional and the self-normalized

FFH/MFSK demodulators is B Hz, then for each hop the signal is received with noise

7
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of power NoB with probability 1 - y when partial-band interference is not present and

with noise of power (-y'- 1 N j + No)B with probability -y when partial-band interference

is present.

The symbol rate is R, = Rb! log 2 M where M is the order of the MFSK modula-

tion and Rb is the bit rate. Since the MFSK signal is assumed to perform L hops per

symbol, the hop rate is Rh = LR,. The equivalent noise bandwidth of the bandpass

filters in each of the M channels of both the self-normalized FFH/MFSK receiver and

the conventional FFH/MFSK receiver must be at least as wide as the hop rate, and

in this thesis we use B = Rh. The overall system bandwidth is assumed to be very

large compared to the hop rate.

D. Fast Frequency-Hopping

There are two types of frequency-hopping: fast frequency-hopping and slow-

frequency hopping. In fast-frequency hopping the carrier frequency changes (hops)

more than once per data symbol and all hops within a symbol duration are combined

in the receiver to provide the sample statistic, but in slow frequency-hopping the

carrier frequency changes only once per data symbol. Hence, the terms of 'slow'

and 'fast' do not mean absolutely how fast the carrier frequency changes. We define

diversity of order L as the case where each M-ary symbol is transmitted L times over

the channel. Thus, if Eh is the energy for each trasmission then each M-ary symbol

requires a total energy of

E. = LEh (1.3)

where E. is the symbol energy. The diversity factor is a key point of fast frequency-

hopping communication systems, and the object of this thesis is to determine under

what conditons fast frequency-bopping systems can provide immunity to partial-band

interference.

9



II. ANALYSIS

A. Determination of the Probability of Bit Error

1. Conventional Receiver

An analysis of the conventional FFH/MFSK receiver requires, to begin

with, a description of the samples at the output of the M quadratic detectors be-

fore diversity combining. The partial-band interference, when present, is assumed

to be present in all channels. Assuming equally likely M-ary symbols, we have the

probability of symbol error given L independent hops as

P = E i (2.1)
i=O

where P,(i) is the conditional symbol error probability given that i out of L hops

are jammed. Assuming the signal is present in branch one, we have the probability

density function of the random variable xlk representing the output of the quadratic

detector [Ref. 3].
2 x1 I'xlk+2 ak) ,a Vl cy _ __

fxlk(Xlklak) = IoXp a k /2 U(Xk) (2.2)

where vr/ak is the signal amplitude, a2 is noise power in hop k, and Io(.) is the

zeroth-order modified Bessel function of the first kind. The unconditional probability

density function is found by evaluating

fxk(xlk) = - fx,(Xlkak)fAk (ak)dak (2.3)

The amplitude of the signal is modeled as a Rician distributed random variable with

a probability density function as given by (1.1). Substituting (1.1) and (2.2) into

(2.3), we have

f x ,k (x1k ) e x p 2( k + 2 a ) l o -k v'kH u (x l k ) (2 .4 )

2(U2 + 2,2) (2( + 20r2)I ak1 + 2o

10



The probability density function of each of the M - 1 channels with only Gaussian

noise is
1 (_Xmk'fX, (Xmk) = kexp 2 1u (X k) (2.5)

which is easily obtained by replacing the signal amplitude ak with 0 and replacing Xlk

with Xmk, where m = 2,3,4 .... M. Next, the L samples are combined to obtain the

final sample statistic. Assuming i out of L hops are jammed, we obtain the decision

variable for branch 1

L

k=1
L

X(2) (2.6)

k=1 k=i+l

where the superscript (1) implies a jammed hop and (2) implies a non-jammed hop.

Since each hop is assumed to be independent, we have

fx,(xi) = [f(X v [fX,(x\,0)] (2.7)

where fxi )(xvk)) is the probability density function when jamming is present, fx2) (x2))

when no jamming is present, 0 implies convolution, ®i implies an i-fold convolu-

tion, and ®(L - i) implies an (L - i)-fold convolution. Similarly, for the noise only

branches, we have the random variables

L
Xm = Z Xmk

k=1

i L
Q=1 + X(2 m = 2,3,...,M (2.8)

k=1 k=i+l

and the probability density function

= X (1 fX (2)
fX,(XM) = [fX(1) 0 (9 (x )] (2.9)

For MFSK, the probability of symbol error is [Ref. 5]

P8 (/) = 1 -ofX,(Xi)[V fx.(Xm)dxm]dxI (2.10)

11



Equation (2.10) requires fx, (xnli) and fx,.(xm). In order to obtain fx, (x, Ii),

we first rewrite (2.7)

fx, (xi i) = f x" (xi 1i) Gfk A(xili) (2.11)

Two probability density functions are computed separately

fk[(xi(i) = [f (1) 1)]®if 'l~lli) -- txlkl)12)

= L-1 { [Fklk'(s)]t} (2.12)

where F.lk(s) is Laplace transform of fx,,(xlkli) and £-1 is the inverse Laplace

transform operation.
2' 2 012 (r2. 2 ,2[-2ako 1 (okj ± 20.2)]

FX1~ exp Z ik[ (S)] ex (1 + 2s(0,2 + 2a2))(0o, + 2a 2 ).

x1 (213
x [1 +2s(a23 + 2a2) (2.13)

where okj represents jamming noise power plus thermal noise power. The inverse

Laplace transform of (2.13) yields

i

Similarly

f, (xhi) exp 2(L2 2) 21

f1(xI e[ 2(,.+2r) ia+2u2

2( + 20.) (L - i)a J

[ 2(2 + 22)] IL_,_t [ 2 7.; (2.15)

where ak2 represents thermal noise power. In order to obtain fx 1 (xili), (2.14) and

(2.15) must be convolved. In general, this cannot be done analytically.

12



For the noise branch, the probability density function is

fx1(Xm) 2 j e , e ] 20" (2.16)
1 O'k o

The Laplace transform of (2.16) is

F\'m(S) + (2.17)

where
(1)_ 1 2) 1 (2.18)

202 ~ 2 (2.18

Equation (2.17) can be expanded in a Heaviside partial fraction expansion to obtain

SK11 K12 + + K1i

s+ f(l) +( + Ok)) (s +,3()

+ K2 + ~ K2 A 2(L-i) (2.19)

where the coefficients Kj, j = 1,2,.. ,i and Klk , k = 1,2,--.,L - i depend on

L and i. Specific coefficients for several values of L and i are given in Table 2.1.

Applying the inverse Laplace transform to (2.19), we obtain

(1 K 3X 2 'x,_'-' I )
fI(Xm) = I + K 2 Xm + !+ + K (i

(2 ) Im (K2 K232Xm 2
+ C- 3 ".' X K21 + IK22X M, + K 23X M +

"'" + K2( L-i X-L- I

+ IA2(L. i-i) ) -m(2.20)
(L -,i - 1).!

We can now compute the second integral in (2.10) using (2.20) with the

result

13



L. i Coefficients
L=1, i= 0 K21 = (2)

L=1, j=1 K,,=3(')
L=2, i=0 K 21 =0

A22 = (k))

L =2, i I KIl = k 
''

_ (1)+a,,6(2)
--..k + ,'-k

K21 = -K 1
L=2, i=2 K 1 1 =0

___________ 1 2 =Ok0

L=3, i=O K 2 1 =0

K 22 = 0

L = 3,23 = ( l =/11)3 p_ a (2)f; )

L=3, ?'=1 K,_
,(1) +0"2))\

1 '( 2 2 = 
,- 'I ( 3 - 2

K 2 1 = O1k k" - KI, k

L=3, i= 2 K 21 = Ok2) 0(2)

K1  )3~2(1)+ k21 '

k k

1))2,6(2)

KI2- , )() f

I'1" - k t-k 21

L=3, i=3 K1,=0
K2 = 0

K13 = (Ok'

TABLE 2.1: Coefficients of Heaviside Partial Fraction Expansion
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j fxm(xm)dxm Kip
(1))

p

pi17- (i ---

p=l r=O r!O~

L-i K2p

+ E (k2))p

L-i --1(2L--l-r
-- If2pe-k E)(p(r)0 Xl (2.21)

P=1 r=O (L - i- 1 - r)!(3(k2 )+ (

So the final form of P8 (i) which must be evaluated numerically is

f ( 2 + ) 1a + X,
P@(i) 1 exp 2(i +22) '

( 1 L~-~2 x(0,2 _2+ 2

®×e('- (+o2 ) ,_ 2L-

P=(, )p~ (::0( 11= R -kj#i~

1 i 2( 2a 22-12C21

\k+2.))2 L-12(L - i)a~k+xi X 0, 202i

2 2 ( k ~ +20&2 (Lf]

p(1) P= x - -r

x - - _-_ dl 12.2p=1 (31)- lPe kc -+__________

pi r0 (i

P =1 (32))p p=1

XZj M-1

p=I i 10)r ] dx, 2.2
r=0 (L - I - 1- (2.22

2. Self-normalization Receiver

The difference between the self-normalization receiver and the conventional

receiver is the self-normalization factor which is the sum of all M channel outputs

after sampling at the outlet of the quadratic detectors. The new decision statistic is

the combination of self-normalized quadratic detector outputs. In order to find the

15



probability density function of the random variables representing the self-normalized

quadratic detector outputs, we first define the random variable

Vk- = (X2k + X3k ++ - XMk) - Xmk , (M# 5 1) (2.23)

The probability density function of the sum of independent random variables is the

convolution of the probability density functions of those random variables. Thus, the

probability density function of the random variable Vk requires M - 2 convolutions:

fvk(Vk) = fx 2k(X2k) G fx(X3k) ® ... ® fx,(Xik) 0

• .. 0 fxMk(XMk) (i 5 rn) (2.24)

Assuming that all the probability density functions of the branches containing only

noise are the same, we have

fvk(Vk) = [fxj,(Xik)]®(M- 2) (i 5 1 or m) (2.25)

The Laplace transform of fxik(Xik) is

1
Fxk(s)- 2ors + 1 (2.26)

Hence
/ 1 \ M-2

Fvy(s)= (2a-+ M (2.27)

Taking the inverse Laplace transform of (2.27), we get

fvk(vk) = ( 2 (M-3) exp V ) (2.28)

As can be seen from Fig. 1.2, the random variables that represent the self-

normalized outputs of each of the M channels after diversity combining are obtained

as
L

Ui = U,k,i = 1,2,...,M (2.29)
k=1

16



where Uik, i = 1,2,...,M, k = 1,2,...,L are the random variables that repre-

sent the self-normalized outputs of each of the M channels for hop k of a symbol.

These random variables are expressed in terms of the independent random variables

Xik,i = 1,2,. . ., M, k = 1,2,..., L representing the M independent outputs of the

Al quadratic detectors for each channel of the receiver for hop k of a symbol as

Xik

Uik = X±+ (2.30)Xlk +J X2k + - ... + XMk

where 0 _< Uik _ 1 since 0 < Xik < oo,i= 1,2,...,M. Using 2.29, we can express

Pr(U1 < U,, i) as

Pr (U1 < Ui) Pr Ulk < E U,,ki) Pr Ulk - Umk < 01i (2.31)
(k=1 ~k=1 l ~

Defining the random variable ZIk = Ulk - Um. , we obtain

Pr(Ui < U, i) = Pr Zk < 01i

= Pr(Z < 0(i) (2.32)

where
L

Z = E Zk (2.33)
k=1

is our alternative decision variable.

From 2.30 and the definition of Zlk above, we have

Zk= Ulk-Umk

Xlk - Xmk
Xlk + X2k "+ "+ XMk

Xlk - X, k (2.34)Xlk + X,,k + Vk

where -1 < Zk 5 1. This random variable represents the difference between the

power in the branch containing the signal and the power of one noise only branch

which are detected by quadratic detectors and normalized by the self-normalization

17



factor. We use the auxiliary variable method [Ref. 7] to obtain the probability density

function of the new random variable Zlk, where we define the two auxiliary variables

Wk = Vk, Yk = Xlk (2.35)

Reforming (2.34) by replacing Vk and Xlk with (2.35), we have

Xmk = Yk(l - Zlk) - ZlkWk (2.36)
1 + Zlk

and the Jacobian of the transformation is

j (1 + Zlk) 2  (2.37)

2yk + Wk

Now the joint probability density function for the random variables Zlk, Wk, and

Yk is obtained in terms of the joint probability density function of the independent

random variables Xk, Xmk, and Vk as

fzlkYk wk(Zlk, Yk, wkli) I fXk(Ykli)f.mk (Yk(l 1)- ZlkWk fVk(Wk)

2 yk + Wk

(1 + Zlk) 
2

S exp Yk I0 ak

2( 2(+ 2 0,2 )ex 2(a2 +2U2))I ~22

1 1 exp 2(1lk) + zlk

2a2 (M - 3)! exp

Before evaluating the probability density function of the random variable Zlk, we must

be careful in handling the range of the variables. Note that the range of the variable

Xk is -OC < Xmk < co, but recall that fXm,(Xmk) is nonzero only for the range

Xmk > 0. For the range of -1 < Zlk _5 0, Xk is always greater than zero; but

for the range of 0 < Zik 5 1, the range of Xmk is -00 < Xmk < 00. Consequently,
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special care must be taken in evaluating fZlk(zlk). The probability density function

of the random variable ZIk is obtained from

fzj(zlki) = jj1 TfzkYkw (Zk, Yk, wk i)dwkdYk (2.39)

when -1 <Zlk <0 . Since fXmk () is nonzero only for positive values of its argument,

then

fzl (zlk) = jc j ) - ffZAlkWk (Zlk, Yk, Wk)dWkdyk (2.40)

when 0 < ZIk < 1. Evaluating the integrals in (2.39) and (2.40), we have the

probability density function of random variable Zlk conditional on i

fzk(zki) ( (1-+ Zlk)M - 2  
--pk(1-ZIk)

(2 ± Gk(l - Zlk)) 2 + Gk(l - ZIk)

{ 2+ 2(1+ G) [1+ Pk(l+z1k) ]M-2 ++(l_-Zlk) l(1l+ G(l_-Zlk))(l + G)

-g(Zlk)U(Zlk) (2.41)

where

= Zlk( 1 - zlk)M-2 (1 + &k)M - 2 e -pk(1 - Zk)

( - 3)! (1 - (l -zlk))(1 + G))
- { (M -2)(M- 2)!

+ =t (M - 2 - r)!( !)2

S(1 + k(1 - Zk))(1k + &) I + G( k(1Z 1k)

x 2 zlk [(1 PkMlk II (1 - Zk)(M - 3 - m)! (1 + k(1 - Zlk))(1 + G)]

M-3-m Al-3-m ( PkZlk + q
+ , (M -3 -rn - q)!(q!)2 (I + Gk(l - Zlk))(1 + )
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x 2z 1k(M- 2- M) 2

S(1- zk)(M-2 -m - q)

+ (1 + Gk(l - Zlk))(1 + Zlk)(M -2)] } (2.42)

and

a
2
ak

POk 2

Ck= 2o,2 (2.43)

are the signal-to-noise ratios of the direct signal component and the diffuse (or faded)

signal component, resp-ctively.

Having obtained the probability density function of the random variable

Zik, we need to consider diversity to get the overall output sample statistics. The

random variable Z1 is defined

L
Z = E Zlk

k=1
i L

= + E (2.44)

k=1 k=i+l

and the probability density function of the random variable Z, is obtained as

f[f(z)] [r (61)] (L-i) (2.45)

It is difficult to evaluate equation (2.45), so we leave this problem for numerical

analysis.

Now the probability of symbol error of the self-normalized FFH/MFSK

receiver is

P8 (i) = Pr(Ul < U2 U U1 < U 3 U U U < UMIi) (2.46)

For Al > 2, an analytic solution of (2.46) is not possible because the random variables

U1, U2, U3 ,' UM-1 are not independent. Hence, we use the union bound to obtain
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an upper bound on system performance. From (2.46)

P8 (i) < Pr(Ui < U2 1i) + Pr(U1 < U31i) + ... + Pr(Ui < UMli) (2.47)

Since we assume the sample statistics of all noise only branches are the same, then

(2.47) becomes

P,(i) <_ (M - 1) Pr(U1 < Un i) (2.48)

where m = 2,3,4,..., M. Substituting (2.32) into (2.48), we have

P,(i) < (M - 1)Pr(Zi < Oji) (2.49)

Since

Pr(Z < 0) = fz,(zIi)dzi (2.50)

then from (2.49)

P.(i) < (M-1) fz,(z Ii)dzi (2.51)

The probability of symbol error is related to the probability of bit error by [Ref. 5]

2 k-1
Pb(i) = P(i) x ,k = log2 M

M
= P8 (i) × 2(M - 1) (2.52)

Substituting (2.48) into (2.52), we get

Pb(i) :5- fz,(zli)dzi (2.53)
-- 2 -L

Equation (2.53) must be evaluated numerically.
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III. NUMERICAL ANALYSIS

Results of the probability of error analysis for both the conventional receiver

and the self-nomalization receiver are obtained for L = 1 to 6 hops per bit for several

signal-to-noise ratios and direct-to-diffuse component ratios as a function of signal-to-

interference ratio to provide an overall comparison of channel and interference effects

on system performance for both receivers. In all cases the evaluation of either (2.22)

or (2.41) is accomplished via a numerical integration routine. We consider L + 1

different cases for a diversity of L hops. For example, for L = 1 the two cases to be

considered are one non-jammed hop and one jammed hop. For L = 2 there are three

cases: neither hop jammed, one non-jammed hop and one jammed hop, and both hops

jammed. Additionally, the effect of the jamming ratio -y on system performance is

examined. We can relate the signal-to-noise ratio to the signal energy density-to-noise

power ratio for a jammed hop as

c2 + 2a 2 Eb Blog2 MNo 32R- (3.1)aki No + Njl7y R. L

where

2
ak direct signal power component

2o2 : diffuse signal power component

cc' + 202 : total signal power

2 thermal noise plus jamming noise power

Eb : average signal bit energy density

No : thermal noise power spectral density

N3  : jamming noise power spectral density

jamming ratio
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B IF bandwidth

R, :symbol rate

M number of symbols in alphabet

L number of hops in a symbol

For hops with no partial-band jamming

a 2 +20, 2  Eb B 10g 2 Mk b- (3.2)
k No R. L

where Ok2 is the thermal noise power. Assuming the IF bandwidth (B) is equal to the

symbol rate, we can rewrite (3.1) and (3.2)

a2 + 202 Eb log 2 MkNo+N 3 /' L (3.3)

and
a2 + 20 2  Eb log 2 MS N0  L(3.4)

For computational purposed, define

0 2 = 1 (3.5)

Eb 77 (3.6)
No
Eb

N = v (3.7)

- ¢ (3.8)2a.
2

log2 M = w (3.9)

Substituting (3.5) through (3.9) into (3.3) and (3.4), we have

2 ___________2or (ti-yv)(i4-1)L (3.10)

(7 + -tv)() + 1)L (3.11)

Ok= + -yv) (3.12)
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Substituting (3.10), (3.11), and (3.12) into the probability density function of the

conventional receiver and the probability density function of self-normalization re-

ceiver and using an fast Fourier transform (FFT) routine with a sequence length of

N=1024, numerical sequences of the probability density functions are generated for

various signal-to-noise ratios of the jammed and non-jammed cases.

A. Conventional Receiver

Except for a single convolution, we have obtained analytic solution for the prob-

ability density function of the decision statistic for the conventional FFH/MFSK de-

tector. Unfortunately, the modified Bessel function terms make it difficult to obtain

a complete analytic solution for the general case. Consequently, we use an FFT to

perform the convolution numerically. Even though we have an analytic expression for

the probability density function of the noise branch statistic (the last part of (2.22)),

we use numerical methods to correspond with the signal statistic part which must be

evaluated numerically. Hence, we use different equations for the numerical procedure.

Equation (2.16) can be rewritten
fx,, (x D][2)

fxm(Xr) fj, (xm ) 0 fx'(Xm) (3.13)

where

e() = (3.14)

fXM (Xm) = 1a2 e- -2J (3.15)

Using the Laplace transform, we get

F ' ] " (s) [f ) (3.16)

Flm(S) - +t( 2  (3.17)
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where

(') = 2 (3.18)

2o,
,3(2) 1 1 (3.19)

The inverse Laplace transform of (3.16) and (3.17) yields
[I] ( _- .i i-1 _z_

t(X'1)'x,, e (3.20)
f ,,,(xm) ,ks (i-l e

/ 1 L- xLi- -

(XM) 2 e 2-k (3.21)Jxm~x) = 2a- (L -i - 1)!€

Now we have a different form of the probability density function of the random vari-

able X,

fx,,(xM) = [(2-

Inasd (L i---- 1)! k (3.22)

Instead of (2.21) we substitute (3.22) into (2.22) and analyze (2.22) numerically be-

cause we need a numerical sequence of this formula to coincide with the numerical

sequence obtained for (2.11) The length of the basic sequence is N=1024, and prior

to convolution it is zero-padded to create a sequence of total length N=2048 since the

sequence is to be convolved one time.

Numerical problems are encountered since as the value of the variable x, in-

creases the exponential terms approach zero and the modifiied Bessel function terms

approach infinity. Hence, the multiplication of the exponential term and the modified

Bessel function term is invalid when the argument of the exponent is less than -745

or the argument of the modified Bessel function is greater than 705 when 386Mat-

lab is used. For example, in the situation described above, the value of exp(-745) is

4.9470e-324. but the value of exp(-746) is set to 0 by the computer. The value of
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Bessel(705),where the 386 MATLAB function for the modified Bessel function 10(0)

is Bessel(s), is 2.2621e+304 and Bessel(706) is not defined. Even though the product

of the two is either zero or an invalid number, the true value of a multiplication is a

valid number. When this situation is encountered, the program evaluates the situa-

tion and uses either zero or one (because the cumulative probability density function

approaches one as the value of the variable increases).

When two probability density functions are convolved by an FFT, if the valid

range of one probability density function is much wider than the range of the other, the

result is almost the same as the probability density function that has wider range.

We must check for this situation whenever the parameters of the equation change

while the program is running, skip the numerical convolution steps, and instead use

the probability density function that has wider range as the convolution output.

B. Self-Normalization Receiver

The probability density function of self-normalization receiver (2.41) is relatively

complicated and we must use an L-fold convolution to evaluate (2.44); an i-fold con-

volution for jammed hops, an (L - i)-fold convolution for noniammed hons. and each

result must be convolved. To implement the convolution numerically, the numerical

sequences of the probability density function of the self-normalization receiver must

be zero-padded to a total length of N x L before the FFT is performed in order

to preserve the desired linear convolution of (2.44). The transformed sequences are

multiplied point by point to produce the desired seqence of

Fz[(s) = [F(')(s)]' x [F(?)(s)]L -  (3.23)

where F is the Fourier transform of f. This result is then inverse fast Fourier trans-

formed to yield the desired sequence for fz, (z1 ). The procedures for L=3 and L=5

are similar to that for L=4 and L=6, respectively, because the length of the sequence
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for the FET should be a power of two., and the sequences should be zero-padded to

N=4096 (2 12) for L=3 and L=4 and to N=8192 (2 13) for L=5 and L=6.

Equation (2.42) has many summations inside which must be carefully handled

since numerical errors are likely when the value of the variable Zlk approaches one

When Zik approaches unity, the term 1/(1 -Z~k) approaches infinity. Therefore, we

must group the terms properly to minimize numerical errors. Equation (2.42) is

rewritten

g(Zik) - Zik(1 - zlk)M 2(1 + G)M-2 [x Pk(1 - Zjk)1
(1 + Gk(l - Zlk))M-1(l + Zlk) ex1 1 + Gk(1 - Zlk)J

M-2 (M - 2)(M - 2)! rPkZlk 1
x 1: (M - 2 - m)!(m!)2 1(+ (1-Z)(1+ )J

M-3 [ NO( - Zlk)
+ Eexp [+~1zk

2z~k((I - ZIk)(1 + 6~k)) ~( + 6k)(1 -t- Zlk)m 1 ( nx (1 + 60( - Zlk))M-l-m

M-2-m M -2-rn PkZlk 1
x :(M - 2 -rn - q)!(q!)2 [(I + G(l - Zlk))(1 + G)]

M-3 [Pk(l - Zlk) ]((1 - Zlk)(1 + G ))M-3m Zlk(1 + Zlk) m (M -2)
+±Z:exp [1 + G(l - Zl) (+ (1 - Zlk))M- 2 -m

~M-3m M -3-rnm PkZlk ](.4
,=( (Ml -3 - m - q)!(q!) 2 [I+ 6k(1 - Zlk))(1 + 6k~)j

in order to minimize computational errors.
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IV. RESULTS

A FFH/MFSK receiver design that demonstrates strong immunity to the partial-

band interference is the noise normalization receiver. This receiver requires a measure-

ment of the noise power per hop, but it is not easy to measure the noise power precisely

in practical situations. This measurement is not required for the self-normalization

receiver; hence, it is easier to implement the self-normalization receiver. As will

be seen, partial-band jamming strongly affects the performance of the conventional

FFH/MFSK receiver, while the self-normalization FFH/MFSK receiver performs well

against partial-band jamming. Probability of bit error analyses for both the conven-

tional system and the self-normalization system assume worst case partial-band jam-

ming. The channel is modeled for a moderately strong direct-to-diffuse signal ratio

(a/2a 2 = 10) which we will refer to as Rician, and as a primarily Rayleigh faded

channel (a2/2o"2 = 0.01). For Rician fading the worst case jamming ratio typically

increases as interference power increases. For Rayleigh fading worst case jamming

corresponds to broadband jamming (jamming ratio -1 = 1) for all levels of jamming

power.

A. Performance of Conventional FFH/MFSK Receiver

Graphs of the probability of bit error, including worst case, as a function of

signal-to-jamming ratio for fixed signal-to-thermal noise ratios are obtained for 1

through 6 hops per symbol. These results are obtained by numerically evaluating

(2.44) for values of the jamming ratio ranging from 1.0 to 0.001 and retaining worst

case performance for each value of Eb/Nj . The results for a Rician fading channel

are shown in Fig. 4.i through Fig. 4.6.
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Conventional FH/MFSK Receiver Performance
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Figure 4.1: The Performance of the Conventional FFH/MFSK nonco-
herent Receiver at Signal-to-Thermal Noise Ratio = 13.35 dB, Hopping
Number per Symbol = 1, Order of Modulation = 4 and Direct-to-Diffuse
Signal Power Ratio = 10
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Conventional FH/MF'SK Receiver Performance
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Figure 4.2: The Performance of the Conventional FFH/MFSK nonco-
herent Receiver at Signal-to-Thermal Noise Ratio = 13.35 dB, Hopping
Number per Symbol = 2, Order of Modulation = 4 and Direct-to-Diffuse
Signal Power Ratio =10
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[onvantiona1. FH/MFSK Receiver Performance
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Figure 4.3: The Performance of the Conventional FFH/MFSK nonco-
herent Receiver at Signal-to-Thermal Noise Ratio = 13.35 dB, Hopping
Number per Symbol =3, Order of Modulation = 4 and Direct-to-Diffuse
Signal Power Ratio = 10
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Conventional FH/MFSK Receiver Performance
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Figure 4.4: The Performance of the Conventional FFH/MFSK nonco-
herent Receiver at Signal-to- Thermal Noise Ratio = 13.35 dB, Hopping
Number per Symbol = 4, Order of Modulation = 4 and Direct-to-Diffuse
Signal Power Ratio = 10
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Conventional FH/MFSK Receiver Performance
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Figure 4.5: The Performance of the Conventional FFH/MFSK nonco-
herent Receiver at Signal-to-Thermal Noise Ratio = 13.35 dB, Hopping
Number per Symbol = 5, Order of Modulation = 4 and Direct-to-Diffuse
Signal Power Ratio =10
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Figure 4.6: The Performance of the Conventional FFH/MFSK nonco-
herent Receiver at Signal-to-Thermal Noise Ratio = 13.35 dB, Hopping
Number per Symbol = 6, Order of Modulation = 4 and Direct-to-Diffuse
Signal Power Ratio = 10

34



The signal-to-noise ratio, direct-to-diffuse ratio, and the modulation order are

chos,-. to enable direct comparison with the results obtained in [Ref. 2]. We see that

foi a Rician channel that diversity is not effective in reducing the effects of worst case

partial-band jamming. Worst case performance is poorer when diversity is used than

for no diversity. As diversity increases, only the asymtotic value for high E6 /Nj ap-

proaches the performance of the noise-nomalization receiver. The order of modulation

has no effect with respect to providing immunity to partial-band interference. This

is illustrated in Fig. 4.4 and Fig. 4.7 through Fig. 4.9. Generally both diversity and

the order of modulatin are effective in improving system performance for full-band

jamming (-y = 1) as shown Fig. 4.10 and Fig. 4.11.

Generally both diversity and the order of modulation for a Rayleigh fading

channel are effective in improveing system performance for full band jamming (-y = 1)

as shown ;- Fig. 4.10 and Fig. 4.11. However, System performance, shown in Fig.

4.12 throu6U -Fig. 4.16, is not improved by either diversity or modulation order when

worst case partial-band jamming is assumed. When the signal-to-thermal noise

ratio increases, the performance of the conventional receiver for worst case partial-

band jamming is unchanged from that of lower signal-to-thermal noise cases except

for the asymtotic limit of negligible EbIN,.

35



Conventional FH/MFSK Receiver Performance
106

E /NN-z3..35 dIB L=4 M=B a 2c=0

14c*o Jamming Ratio=1.0

-0 - -Jaoni ng Ratio=0.@1

~4= ~ Jammring Ratio=0.001C-,---

10-3

1W6  4

Solid Lineo: Wor st Cas- e

0 10 20 30 40 50

Eb/N. (dB)

Figure 4.7: The Performance of the Conventional FFH/MFSK nonco-
herent Receiver at Signal-to-Thermal Noise Ratio = 13.35 dB, Hopping
Number per Symbol = 4, Order of Modulation = 8 and Direct-to-Diffuse
Signal Power Ratio = 10
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Figure 4.8: The Performance of the Conventional FFH/MFSK nonco-
herent Receiver at Signal-to-Thermal Noise Ratio = 13.35 dB, Hopping
Number per Symbol =4, Order of Modulation = 16 and Direct-to-Diffuse
Signal Power Ratio =10
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Figure 4.9: The Performance of the Conventional FFH/MFSK nonco-
herent Receiver at Signal-to-Thermal Noise Ratio = 13.35 dB, Hopping
Number per Symbol =4, Order of Modulation = 32 and Direct-to-Diffuse
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Figure 4.10: The Performance of the Conventional FFH/MFSK noncoher-
ent Receiver at Signal-to-Thermal Noise Ratio = 20.0dB, Jamming Ratio

- 1, Order of Modulation = 8 and Direct-to-Diffuse Signal Power Ratio
- 0.01
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Figure 4.11: The Performance of the Conventional FFH/MFSK noncoher-
ent Receiver at Signal-to-Thermal Noise Ratio = 20.0dB, Hopping Num-
ber per Symbol = 4, Jamming Ratio 1 and Direct-to-Diffuse Signal
Power Ratio = 0.01
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Figure 4.12: The Performance of the Conventional FFH/MFSK nonco-
herent Receiver at Signal-to-Thermal Noise Ratio = 13.35 dB, Hopping
Number per Symbol = 1, Order of Modulation = 4 and Direct-to-Diffuse
Signal Power Ratio = 0.01
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Figure 4.13: The Performance of the Conventional FFH/MFSK nonco-
herent Receiver at Signal-to-Thermal Noise Ratio =13.35 dB, Hopping
Number per Symbol =3, Order of Modulation = 4 and Direct-to-Diffuse
Signal Power Ratio 0.01
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Figure 4.14: The Performance of the Conventional FFH/MFSK nonco-
herent Receiver at Signal-to-Thermal Noise Ratio = 13.35 dB, Hopping
Number per Symbol =5, Order of Modulation = 4 and Direct-to-Diffuse
Signal Power Ratio 0.01
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Figure 4.15: The Performance of the Conventional FFH/MFSK nonco-
herent Receiver at Signal-to-Thermal Noise Ratio = 13.35 dB, Hopping
Number per Symbol =4, Order of Modulation = 16 and Direct-to-Diffuse
Signal Power Ratio =0.01
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Figure 4.16: The Performance of the Conventional FFH/MFSK nonco-
herent Receiver at Signal-to-Thermal Noise Ratio = 13.35 dB, Hopping
Number per Symbol =4, Order of Modulation = 32 and Direct-to-Diffuse
Signal Power Ratio =0.01
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B. Performance of Self-Normalization FFH/MFSK Receiver

All parameters used in the graphs for the self-normalization receiver are the

same as those used for the conventional receiver to make it easier to compare with

each other as well as with the noise-normalization receiver. As we see from Fig. 4.17

through Fig. 4.25, for a Rician fading channel, increasing diversity and increasing

modulation order are both effective in minimizing the effects of worst case partial-

band interference.

Overall, the performance of the self-normalization receiver is almost the same

as that of the noise-normalization receiver. There exists a small difference in the

performance of the two receivers. This difference is expected due to the union bound

used to obtain the FFH/MFSK self-normalized receiver performance. The union

bound has the most pronounced effect on system performance when EbINj is small

and the modulation order is high. See, for example, Fig. 4.26 where the probability

of bit error for a bit energy-to-jamming noise density ratio of 0 dB with a jamming

ratio 1.0 is shown greater than unity. This is not valid for a probability. However,

the error performance at low EbINj is not important, and the error due to the union

bound compared to the exact value at high EbINj is not significant.

The performance of the self-normalization receiver for a Rayleigh fading channel

in worst case partial-band jamming is the same as for full band jamming (-y = 1)

regardless of the parameters as shown in Fig. 4.27 through Fig. 4.29. Generally for

a Rayleigh fading channel, diversity is effective in improving the performance of the

self-normalization receiver. This is shown in Fig. 4.30. The effect of increasing the

modulation order is less significant as shown in Fig. 4.26. As mentioned previously,

the union bound makes the simulated performance worse than the true performance.
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Figure 4.17: The Performance of the Self-Normalization FFH/MFSK non-
coherent Receiver at Signal-to-Thermal Noise Ratio = 13.35 dB, Hopping
Number per Symbol = 1, Order of Modulation = 4 and Direct-to-Diffuse
Signal Power Ratio = 10
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Figure 4.18: The Performance of the Self-Normalization FFH/MFSK non-
coherent Receiver at Signal-to-Thermal Noise Ratio = 13.35 dB, Hopping
Number per Symbol = 2, Order of Modulation = 4 and Direct-to-Diffuse
Signal Power Ratio = 10
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Figure 4.19: The Performance of the Self-Normalization FFH/MFSK non-
coherent Receiver at Signal-to-Thermal Noise Ratio = 13.35 dB, Hopping
Number per Symbol = 3, Order of Modulation = 4 and Direct-to-Diffuse
Signal Power Ratio = 10
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Figure 4.20: The Performance of the Self-Normalization FFH/MFSK non-
coherent Receiver at Signal-to-Thermal Noise Ratio = 13.35 dB, Hopping
Number per Symbol =4, Order of Modulation = 4 and Direct-to-Diffuse
Signal Power Ratio = 10
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Figure 4.21: The Performance of the Self-Normalization FFH/MFSK non-
coherent Receiver at Signal-to-Thermal Noise Ratio = 13.35 dB, Hopping
Number per Symbol = 5, Order of Modulation = 4 and Direct-to-Diffuse
Signal Power Ratio =10
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Figure 4.22: The Performance of the Self-Normalization FFH/MFSK non-
coherent Receiver at Signal-to-Thermal Noise Ratio = 13.35 dB, Hopping
Number per Symbol =6, Order of Modulation = 4 and Direct-to-Diffuse
Signal Power Ratio =10
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Figure 4.23: The Performance of the Self-Normalization FFH/MFSK non-
coherent Receiver at Signal-to-Thermal Noise Ratio = 13.35 dB, Hopping
Number per Symbol =4, Order of Modulation = 8 arnd Direct-to-Diffuse
Signal Power Ratio =10
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Figure 4.24: The Performance of the Self-Normalization FFH/MFSK non-
coherent Receiver at Signal-to-Thermal Noise Ratio = 13.35 dB, Hopping
Number per Symbol = 4, Order of Modulation = 16 and Direct-to-Diffuse
Signal Power Ratio =10
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Figure 4.25: The Performance of the Self-Normalization FFH/MFSK non-
coherent Receiver at Signal-to-Thermal Noise Ratio = 13.35 dB, Hopping
Number per Symbol =4, Order of Modulation = 32 and Direct-to-Diffuse
Signal Power Ratio =10
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Figure 4.26: The Performance of the Self-Normalization FFH/MFSK non-
coherent Receiver at Signal-to-Thermal Noise Ratio = 20.0dB, Hopping
Number per Symbol = 4, Jamming Ratio = 1 and Direct-to-Diffuse Signal
Power Ratio = 0.01
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Figure 4.27: The Performance of the Self-Normalization FFH/MFSK non-
coherent Receiver at Signal-to-Thermal Noise Ratio = 20.0 dB, Hopping
Numbei = 1, Order of Modulation = 4 and Direct-to-Diffuse Signal Power
Ratio = 0.01
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Figure 4.28: The Performance of the Self-Normalization FFH/MFSK non-
coherent Receiver at Signal-to-Thermal Noise Ratio = 20.0dB, Hopping
Number = 4, Order of Modulation = 4 and Direct-to-Diffuse Signal Power
Ratio = 0.01
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Figure 4.29: The Performance of the Self-Normalization FFH/MFSK non-
coherent Receiver at Signal-to-Thermal Noise Ratio = 20.0dB, Hopping
Number = 6, Order of Modulation = 32 and Direct-to-Diffuse Signal Power
Ratio = 0.01
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V. CONCLUSION

The probability of bit error performance for a conventional noncoherent FFH/MFSK

receiver has been obtained for Rayleigh- and Rician-faded channel with partial-

band jamming. The effect of fading is detrimental for both fading models, but fast

frequency-hopping in general provides a means to overcome, at least partially, fading

effects. However, the conventional receiver is severely affected by worst case partial-

band jamming. It does not show any improvement in worst case performance with

high diversity or high order of modulation. The probability of bit error of the conven-

tional receiver in worst case partial-band jamming is always between 10-2 and 10- 3

at Eb/NAj of 20 dB regardless of Eb/No, the order of modulation, diversity factor, or

direct-to diffuse power ratio. The probability of bit error of the self-normalization re-

ceiver in worst case partial-band jamming is the same as that of conventional receiver

for slow frequency-hopping (L=1). However, for fast frequency-hopping, the perfor-

mance becomes better and better with increasing diversity factors: the probability of

bit error is 5 X 10- 4 at L=2, 2 X 10- 4 at L=3, 10-' at L=4 and 8 x 10 - at L=5 and

L=6. When the diversity factor is 6, the worst case performance is almost same as

that of full band jamming case (jamming ratio 1.0). At this point the jammer does

not need any information about the communicator to optimize the jamming effect by

managing the jamming power.

The self-normalization receiver with diversity provides very good immunity to

worst case partial-band jamming and has a performance similar to that of the noise-

normalization receiver. The order of modulation also improves the overall perfor-

mance of the self-normalization receiver, but partial-band jamming affects higher

orders of modulation more than the lower ones. Thus, if the communicator uses a
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higher order of modulation and wants to suppress all partial-band jamming effects,

he should use a higher hopping rate.
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APPENDIX A

%This is the Matlab program to produce the probability of bit%
error of
% Conventional FH/MFSK quadratic receiver.
% Lee,Kang Yeun (Major ROKAF)

clear
%.3 signal-to-noise ratios to be implemented (13.35 db, 16 db, and
% 20db)
SNR=[21.62718524D0 39.81071706D0 l00.0D0];

% 2 direct-to-diffuse signal power ratios (0.01 and 10)
DDR=[O.OlDO l0.ODO);

% 4 jamming ratio (1, 0.1, 0.01 and 0.001)
JRATIO=[l.0D0 0.lDO 0.OlDO 0.001D0];
data=zeros(8,51);

% set the thermal plus jamming noise power 1
rhokl=l;

%s basic sequence length is 1024
lim=1024;
n=2*lim;
zpad=zeros (1,lim);
opad=ones (1,lim);

%s hopping number (1 to 6)
for L--1:6,
for jl=l:2, ps i=DDR (j1);
for j2=1:3, nu=SNR(j2);
for j3=1:4, gama=JRATIO(j3);

%s the order of modulation (M-ary :4, 8, 16, 32-ary)
for j4=2:5; M=2Aj4;
for j5=0:2:50, iota=10.ODOA(0.1DO*j5);

%s diffuse signal power ( rho )
rho=nu*gama*iota/(nu+gama*iota)/(psi+1) *j4/L;

%s direct signal power ( alpha )
alpha=rho*psi;

%s thermal noise power ( rhok2 )
rhok2=iota*gama/ (iota *gama+nu);

%s set the sequence limit roughly based on the singal-to-noise ratio
%s (nu)
limx=80*nu

%s divide the range by 100 to check the proper limit
delta=limx/l00;

%s select almost the middle value of the increment to compute the
Psequence
Pof the probability density function.
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x=0 .49*delta :delta: limx-0. 51*delta;
g=exp(-(x+2*L*alpha)/2/(rhokl+rho) )/2/(rhokl+rho).

*x/2/L/alpha). ..
((L-1)/2) .*abs (jA (L-1)*bessel(L-l,j*sqrt(2*L*alpha*x)..
/ (rhokl+rho) ) )*det

%check the sequence whether it has invalid sequence or not
fi=firid(isrian(g));
g(fi)=zeros(l,length(fi));

%if the sequence has only Os, the limit is too wide. Thus set the
%first
%increment as the new limit
if all(g==0)==l,
gmin=1;

%if the sequence is valid, check the point around 1.0e-6 to select
%the
%new limit
else, [xx,ginaxJ--max(g);
g(1:gmax)=ones(l,gmax) *xx;
[xx,gmin]=min((g-1.Oe-6) .A2);
end
limx=ginin*delta;

%if the new limit is first or second value of the increment
%redo above procedure
while gmin <= 2 ,
delta=limx/100; x=O.5*delta:delta:limx-O.5*delta;
g=exp(-(x+2*L*alpha)/2/(rhokl+rho) )/2/..

(rhokl+rho) . *(x/2/L/alpha) A ...

((L-1)/2) .*abs (jA (L-l)*bessel(L-1,j*sqrt(2*L*alpha*x)..
/ (rhokl+rho) ) )*delta;

fi=find(isnan(g));
g(fi)=zeros(1,length(fi));
if all(g==O)==l,
gmin=l;
else, (xx,gmax)=max(g);
g(l:gmax)=ones(l,gmax) *xx;
(xx,gminJ=min((g-l.Oe-6) .A2);

end
limx=gmin*delta;
end

%after setting the limit, whole range is divided by 1024
%to produce the sequence
delta=limx/lim;x=O.49*delta:delta:limx-O.51*delta;

%if jamming ratio is 1, the computation is simpler than others
if j3 == 1,
gs=- (x+2*L*alpha)/2/(rhokl+rho) -log(2*(rhokl+rho))
+log(x/2/L/alpha) * ...

(L-1)/2+log(abs (jA (L-1)*bessel(L-l,j*sqrt(2*L*alpha*x)..
/(rhokl+rho))));
gs=exp(gs) *de4ta;
fi=find(isnan(gs));
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gs(fi)=zeros(l,length(fi));
if all(gs--O) --1,
gs=zeros(1,lim);
gs(1)=1;
else gs=gs/sum(gs);
end
ps=log(1/2/rhokl) *L+log(x) *(L-1)-log(fact(L-1)) -x/2/rhocl;

ps=exp(ps) *delta;
fi=find(isnan(ps));
ps (fi) =zeros( 1, length (fi)) ;
if all(ps--O) --1,
ps=ones(1,lim);
else,ps=ps/sum(ps);
ps=cumsum(ps);
ps=ps/max(ps);
end
data(count,j5+l)=M/2/(M-l)*(1-SUM(gS.*pS.A(M-1)));
else

% if jamming ratio is not 1 , the hopping number has to be
% considered

for i =0 : L
% if no hop is jammed

if i == 0,
delta=limx/lOO;
x=0. 5*delta: delta: limx-0. 5*delta;
g=-(x+2*L*alpha)/2/ (rhok2+rho)-log(2*(rhok2+rho))..
+log (x/2/L/alpha) * ...

(L-1)/2+log(abs(jA (L-1) *bessel (L-1,j*sgrt(2*L*alpha*x)..
/(rhok2+rho))));
g=exp(g) *delta;
fi=find(isnan(g));
g(fi)=zeros(l,length(fi));
if all(g--O) --1,
gmin=1;
else, (xx,gmax)=max(g) ;g(1:giax)=ones(1,gmax)*xx;
(xx,ginn=min((g-1.Oe-6). .2);

end
vlimx=gmin*delta;
Icheck the sequence limit again
while gmin <= 2,
delta=vlimx/lOO;
x=0. 5*delta:delta:vlimx-O. 5*delta;
g=-(x+2*L*alpha)/2/(rhok2+rho)-log(2*(rhok2+rho))..
+log(x/2/L/alpha) * ...

(L-1)/2+log(abs (jA (L-1)*bessel(L-l,j*sqrt(2*L*alpha*x)..
/ (rhok2+rho))));
g=exp(g) *delta;
fi=find(isnan(g));
g(fi)=zeros(l,length(fi));
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if all(g--O) -- 1,
gmin=1;
else,
[xx,gmaxJ-max(g) ;g(l:gmax)=ones(l,gmax)*xx;
(xx,qmin]-min( (g-l.Oe-6) .A2);
end
vlimx=gmin*delta;
end
delta--vlimx/lim;
x=O.49*delta:delta:vlimx-O. 51*delta;
gs=-(x+2*L*alpha)/2/(rhok2+rho)-1og(2*(rhok2+rho))..
+log(x/2/L/alpha) * ...

(L-l)/2+log(abs (jA (L-l)*bessel(L-l,j*sqrt(2*L*alpha*x)..
/(rhok2+rho))));
gs=exp(gs) *delta;
fi-find(isnan(gs));
gs(fi)=zeros(l,length(fi));
if all(gs==o)==l,
gs=zeros(l,lim);
gs(l)=l;
else,
gs=gs/sum (gs);
end
ps=-log(2*rhok2)*L+log(x)*(L-l)-log(fact(L-1)) -x/2/rhok2;

ps~exp(ps) *delta;
fi=find(isnan(ps));
ps(fi)=zeros(l,length(fi));
if all(ps==O)==1,
ps=ones(1,lim);
else, ps=ps/sum(ps);
ps=ps/sum(ps);
ps=cumsum(ps);
ps=ps/max(ps);
end

%if all hops are jammed
elseif i == L,
delta=limx/lOO;
x=O. 5*delta: delta: limx-O. 5*delta;
g=-(x+2*i*alpha)/2/(rhokl+rho)-log(2*(rhokl+rho))..
+log(x/2/i/alpha)* ..
(i-l)/2+log(abs (jA (i-l)*bessel(i-l,j*sqrt(2*i*alpha*x)..
/(rhokl+rho))));
g=exp(g) *delta;
fi=find(isnan(g));
g(fi)=zeros(l,length(fi));
if all(g--O) -- 1,
gmin=1;
else,
(xx,gmax)=max(g) ;g(l:gmax)=ones(1,gmax) *xx;
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end
ulimx=ginin*delta;
%check the sequence limit again
while gmin <=2,
delta=ulimx/l00;
x=O. 5*delta :delta: ul imx-O. 5*delta;
g=-(x+2*i*alpha)/2/(rhokl+rho) -log(2*(rhokl+rho))..
+log(x/2/i/alpha) * ...
(i-l)/2+log(abs (JA(i-l)*bessel(i-l,j*sqrt(2*i*alpha*x)..
/(rhokl+rho))));
g=exp(g) *delta;
fi-find(isnan(g));
g(fi)=zeros(l,length(fi));
if all(g--O) --1,
gmin=l;
else,
(xx,gmaxJ=max(g);
g(l:gmax)=ones(l,gmax) *xx;
[xx,gminJ=min( (g-l.Oe-6) .A12);
end

ulimx=gmin*delta;

end
delta=ul imx/l im;
x=O. 49*delta :delta: ulimx-O. 51*delta;
gs=-(x+2*i*alpha)/2/ (rhokl+rho) -log(2* (rhokl+rho))..
+log(x/2/i/alpha) * ...
(i-1)/2+log(abs (jA (i-l)*bessel(i-l,j*sqrt(2*i*alpha*x)..

/(rhokl+rho))));
gs=exp(gs) *delta;
fi=find(isnan(gs));
gs(fi)=zeros(l,length(fi));
if all(gs==o)==1,
gs=zeros(l,lim);
gs(l)=l;
else,
gs=gs/sum (gs);
end
ps=-log(2*rhokl)*i+log(x)*(i-l)-log(fact(i-l)) -x/2/rhokl;

ps=exp(ps) *delta;
if all(ps==O) ==1,
ps= ones(l,lim);
else,
fi= find(isnan(ps));
ps(fi)=zeros(l,length(fi));
ps = cumsum(ps);
PS = ps/max(ps);
end
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else
Sif i hops are jammed and L-i hops are not jammed
%check the sequence limit again
rhok=rhokl;
delta=limx/lOO;
x=O. 5*delta :delta: limx-O. 5*delta;
g=-(x+2*i*alpha)/2/(rhok+rho)-log(2*(rhok+rho))..
+log(x/2/i/alpha) * ...

(i-l)/2+log(abs(jA,(i-l)*bessel(i-l,j*sqrt(2*i*alpha*x)
/ (rhok+rho)) )) ;
g=exp (g) *delta;
fi=find(isnan(g));
g(fi)=zeros(l,length(fi));
if all(g--O) --1,
gmin-l,
else,
(xx,gmaxJ=max(g);
g(l:gmax)=ones(l,gmax) *xx;
fxx,gmin])=min((g-l.Oe-6). .2);
end

wl imx=gmin*delta;
while gmin <=2,
delta=wlimx/1OO;
x=O. 5*delta: delta :wlimx-O. 5*delta;
g=-(x+2*i*alpha)/2/(rhok+rho)-log(2*(rhok+rho))..
+log(x/2/i/alpha) * ...
(i-l)/2+log(abs (jA (i-l)*bessel(i-l,j*sqrt(2*i*alpha*x)
/ (rhok+rho))));
g=exp(g) *delta;
fi=find(isnan(g));
g(fi)=zeros(l,length(fi));
if all(g--O) --1,
gmin=l;
else,
[xx,gmaxJ=max(g);
g(l:gjmax)=ones(l,gmax) *xx;
[xx,gminJ=min( (g-l.Oe-6) A 2);
end
wlimx=gmin*delta;
end
rhok=rhok2;
delta=limx/lOO;
x=O. 5*delta:delta: limx-O. 5*delta;
g=-(x+2*(L-i)*alpha)/2/(rhok+rho)-log(2*(rhok+rho))
+log(x/2/(L-i)/alpha)*..

*alpha*x)/..
(rhok+rho))));
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g=exp(g) *delta;
fi-find(isnan(g));
g(fi)=zeros(l,length(fi));
if all( g--O) --1,
gimin=l;
else,
[xx,gmaxJ=max(g);
g(1:gmax)=ones(l,gmax) *xx;
[xx,gminJ=min((g-1.Oe-6). .2);
end
zlimx=gmin*delta;

%check the sequence limit again
while qmin <=2,
delta=zlinix/ioo;
x=O.5*delta:delta:zlimx-0.5*delta;
g=(+*Li*lh)2(hkro-o(*ro~h) .
+log(x/2/(L-i)/alpha)*..

*alpha*x)/(rhok+rho))));
g=exp(g) *delta;
fi=find(isnan(g));
g(fi)=zeros(l,length(fi));
if all(g--O) --1,
gmin=1;
else,
[xx,gmax]=max(g);
g (1 : max) =ones (1,gznax) *xx;
[xx,gmin)=min( (g-1.Oe-6) .A2);
end
zlimx=gmin*delta;
end
%produce the sequency of jammed hop of signal branch
delta=wlimx/lim;
xO0.49*delta:delta:wlimx-0.51*delta;
gl=-(x+2*i*alpha)/2/ (rhokl+rho) -log(2*(rhokl+rho))..
+log(x/2/i/alpha) * ...

/(rhokl+rho))));
gl=exp(gl) *delta;
fifind(isnan(gl));
gl(fi)=zeros(1,length(fi));
if all(gl==o)==l,
gl-zeros(1,lim);
gl(1)=l;
else,
gl=gl/sum(gl);
end

%produce the sequence of nonjammed hop of signal branch
if wlimx >= lOO*zlimx
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gs=[gl zpadJ;
else
g2=-(x+2*(L-i)*alpha)/2/(rhok2+rho)-log(2*(rhok2+rho))..
+log(x/2/(L-i)..

J*sqrt(2*(L-i)..
*alpha*x)/ (rhok2+rho))));
g2=exp(g2) *delta;
fi=firid(isrian(g2));
g2(fi)=zeros(l,length(fi));
if all(g2==O)==1,
g2=zeros(l,lim);
g2 (l)=l;
else,
g2=g2/sum(g2);
end

Sproduce the sequence of signal branch
gs = abs(ifft(fft(gl,n).*fft(g2,n),n));
gs = gs/sum(gs);
end

%produce the sequence of jammed hop of noise branch
pl=-log(2*rhokl)*i+log(x)*(i-1)-log(fact(i-l) )-x/2/rhokl;
pl=exp(pl) *delta;
fi=find(isnan(pl));
pl(fi)=zeros(l,length(fi));
if all(pl==O)==l,
pl=zeros(l,lim);
pl(1)=l;
else,
pl=pl/sum(pl);
end
%produce the sequence of nonjammed hop of noise branch
p2=-log(2*rhok2) *(L-i)+log(x) *(L-i-l)-log(fact(L-i-l) )-x/2/rhok2;
p2=exp(p2) *delta;
fi=find(isnan(p2));
p2 fi)=zeros(l,length(fi));
if all(p2==O)==l,
p2=zeros(l,lim);
p2 (l)=l;
else,
p2=p2/sum(p2);
end

%produce the sequence of noise branch
ps = abs(ifft(fft(pl,n).*fft(p2,n),n));
ps = cumsum(ps);
ps = ps/max (ps);
end
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%compute the probability of bit error using sequence
tdata ,5+1)=tdata(j5+1)+bino(L,i)*gamali*(1-gama )A(L-i)
*M/2*(l-sum(gs.*pS.A(M-1Nl;
end, end, end

data=[data;tdj;*

save datafile data;

end, end, end, end,end
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APPENDIX B

% This is the program to produce the probability of bit error of
% Self-Normalization FH/MFSK Receiver
% Lee, Kang Yeun (major, ROKAF)

% three special routines
% fact : factorial routine
% bino : binomial coefficient routine
% ereval : error probability computation routine using f ft

% 3 signal-to-noise ratio(13.35db, 16db, 20db)
SNR=(21.62718524D0 39.81071706D0 100.ODO];

% 3 direct-to-diffuse signal power ratio (0.01, 1, 10)
DDR=(0.OlDO l.ODO 10.ODO);

% 4 jamming ratio
JRATIO1=[1.ODO 0.2D0 O.1DO 0.05D0 0.O1DO];
JRATIO2=[1.ODO 0.2D0 0.05D0 0.O1DO 0.OO1DOJ;

% Bandwidth-to-Symbol Rate Ratio (BW/Rs :1 2)
mu=1. ODO;

%M-ary
M=16.ODO;

% Multichannel factor W=logM/log2
omega=log(M)/log(2.ODO);

% Bit SNR 13.35 db
nu=SNR(l);

count=1;

% Hopping number (1 to 6)
for J1=1:6
L=-J 1;

% Direct-to-Diffuse signal ratio (0.01 1 10)
for J3=1:3
psi=DDR (J3);

% Direct SNR of NOJAI4MING CASE
rho=omega*nu*ps i/mu! (psi+1. ODO) /L;

% Diffuse SNR of NOJAMMING CASE
xi=omega*nu/mu/ (psi+l. ODO) IL;

% produce the sequence of nojamming case
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z=-0.999D0O.002D0O.999D0;
NOJAM=exp(rho*(z-l.ODO)./(2.ODO+xi*(l.ODO-z))).
*(1.ODO+z) .A(M-2.0DO)..

.(xi* ~xi(1. D-)).O-z) +. DO DO)).

.*(l.ODO+rho*(1.ODO+z)./((2.0D0+xi*(l.ODO-z))..
*(l.ODO+xi)))+M-2.ODO);

z=0.O0lDO:0.002D0:0.999D0;
B=rho*z./((l.ODO+xi*(l.ODO-z))*(1.ODO+xi));
E=exp(rho*(z-l.0DO)./(l.0DO+xi*(l.ODO-z)));

j TT=zeros(M-1,500);
for N=0:M-2
TT(N+i, :)=fact(M-2.ODO)/fact(M-2.0D0-N)/fact(N )A2*B.oAN;
end
T1=sum(TT).*((l.OD0-z)*(l.ODO+xi)) A (M-2).*z.
*(M-2.ODO) ./(1.ODO+z)...

TT=zeros(M-2,500);
for N=O:M-3
TT1=zeros(M-i-N,500);
for IQ=0:M-2-N
TT(Q1:=atM2OON/at(-.D--Q/atI)2BAQ
end
TEMP=2.OD0*((l.ODO-z)*(1.0DO+xi)) A (M-3-N).*(l.0D0+xi) .*Z.A 2..

TEMP=TEMP./(l.ODO+xi*(1.ODO-z)) .A(M-l.0DO-N) .*E.*sum(TT1);
TT1=zeros (M-2-N, 500);
for IQ=0:M-3-N
TT1(IQ+l,:)fc(-.D-)fc(-.D--Q/atI) 2*.^
end
TEMP1=((1.0D0-z)*(l.0D0+xi)). (M-3-N).*z.*(1.0D0+z)

AN.*(M-..2D0)/(lODO+xi*(DOD.z)) AM..2.N).*E;

if IQ == 0,
TT (N+l, :) =TEMP+TEMPl. *TTi;
else
TT(N+l, :)=TEMP+TEMP1.*sum(TT1);
end
end
Tl=T1+sum(TT);

% sequence of nojamming case
NOJAM(501:1000)=NOJAM(501: 1000) -Ti;

Ps=zeros(5,41);

%jamnming ratio

for J4=1:5
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if J3==3
gamma=JRATIO2 (34);
else
gamma=JRATI0l (34);
end

% Signal-to-Jamming noise ratio ( 0 db - 40 db)

for J5=0:40
iota=l0.ODOA (O.lDO*J5);

% Direct SNR of JAMMING case
rho=omega*nu*iota*psi*gamma/mu/ (psi+l. ODO)/ (iota*gamma+nu)/L;

% Diffuse SNR of JAMMING case
xi=omega*nu*iota*gamma/mu/ (psi+l. 0D0)/ (iota*gamma+nu)/L;

% produce the sequence when the signal is jammed by noise jamming

z=-0.999D0:0.002D0:0.999D0;
JAM=exp(rho*(z-l.ODO)./(2.ODO+xi*(l.ODO-z))).
*(l.ODO+z) A (M-.O2D0)..
./(2.ODO+xi*(l.ODO-z)).

*( (2.ODO*(l.ODO+xi))./(xi*(l.ODO-z)+2.ODO) ...
.*(l.ODO+rho*(l.ODO+z)./((2.ODO+xi*(l.ODO-z))..
*(l.0D0+xi)))+M-2.0D0);

z=0.O0lDO:0.002D0:0.999D0;
B~rho*z./((l.0D0+xi*(l.0D0-z))*(l.0D0+xi));
E=exp(rho*(z-l.ODO)./(l.ODO+xi*(l.ODO-z)));

TT=zeros(M-l,500);
for N=0:M-2
TT(N+l, :)=fact(M-2.0D0)/fact(M-2.0D0-N)/fact(N )A 2*B. N;
end
Tl=sum(TT).*((l.0D0-z)*(l.0D0+xi)) A (M-2).
*z.*(M-2.ODO) ./(l.ODO+z)..

TT=zeros(M-2,500);
for N=0:M-3
TTl=zeros (M-l-N, 500);
for IQ=0:M-2-N
TTl(IQ+l,:=atM2OON/atM2OONI)fc(QA* AIQ
end
TEMP=2.0D0*((l.0D0-z)*(l.0D0+xj)) A (M-3-N).*(l.0D0+xi) .*Z.A 2..

TEMP=TEMP./(l.ODO+xi*(l.ODO-z)) .A(M-l.0D0-N) .*E.*sum(TTl);
TTl=zeros(M-2-N,500);
for IQ=0:M-3-N
TTl(I1Ql,:=atM3OON/atM3OONI)fc(Q * AIQ
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end
TEMPl=((l.OD0-Z)*(1.0D0+Xi)) A (M-3-N).*Z.*(l.ODO+Z)..

N.*(M-.O2D0)./(lODO+Xi*(ODOz)) A(M-2-.N)*E;
if IQ == 0,
TT(N+l, : )=TEMP+TEMPi. *TTI;
else
TT(N+l, :)=TEMP+TEMP1.*sum(TTl);
end
end
Tl=Tl+sum(TT);

% the sequence-of jamming case
JAM(501:lOOO)=JAM(501: 1000) -Ti;

% 'bino' and 'ereval' are the functions for binomial and error
% evaluation.

% Ps(i) <= (M-i) * Pr( z < 0
%Pb = (M/2)/(M-l)*Ps
%Pb <= (M/2) * Pr( z < 0

%probability of symbol error
for i=0:L
Ps(J4,J5+1)-Ps(J4,J5+)+bino(L,i)*gamma Ai* (1-gamma )A (L-i)..

*ereval(NOJA4,L-i ,JAI4,i);
end

% probability of bit error
Ps(JT4,J5+i)=(M/2.ODO)*Ps(J4,J5+i);

end
end

% Save the Results and Plot

save data Ps

end

end
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